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bstract

The power spectral density of the output of wind turbines provides information on the character of fluctuations in turbine output. Here both
-second and 1-hour samples are used to estimate the power spectrum of several wind farms. The measured output power is found to follow a
olmogorov spectrum over more than four orders of magnitude, from 30 s to 2.6 days. This result is in sharp contrast to the only previous study
overing long time periods, published 50 years ago. The spectrum defines the character of fill-in power that must be provided to compensate
or wind’s fluctuations when wind is deployed at large scale. Installing enough linear ramp rate generation (such as a gas generator) to fill in
ast fluctuations with amplitudes of 1% of the maximum fluctuation would oversize the fill-in generation capacity by a factor of two for slower

uctuations, greatly increasing capital costs. A wind system that incorporates batteries, fuel cells, supercapacitors, or other fast-ramp-rate energy
torage systems would match fluctuations much better, and can provide an economic route for deployment of energy storage systems when
enewable portfolio standards require large amounts of intermittent renewable generating sources.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Wind power produced by turbines varies with time. Data with
-s time resolution for one 1.5 MW nameplate capacity turbine
re shown in Fig. 1. The variability is not dramatically reduced
hen hourly samples of the output of several turbines in a wind

arm are summed, as in Fig. 2, nor when hourly data from four
ind farms are summed, as in Fig. 3 (the median hourly change

s reduced by 25%).
The output of such turbines is not random. The character of

he variations can be examined in several ways. One method [1]
s to construct a histogram of the step size in output over time.
ere I extend an approach that has seen use over only a limited

requency range [2]: constructing the power spectrum of wind.
ata here cover four decades of frequency, using both 1-s and 1-
time resolution data. This frequency range is 100 times larger

han that of previous studies.
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. Data

Hourly sampled real power output data with 1 kW power
esolution for four wind farms were obtained for the period from
001 to 2004. The operator of the wind farms has requested that
hey not be identified by location. Each turbine–generator in the
our locations was identical. The minimum distance between
he generation facilities was 30 km; the maximum was 400 km
Table 1). These data were provided for the output of each wind
arm, not for individual turbines. For certain periods, the data
ere supplied with 1 MW power resolution. All four locations
ad 1 kW resolution hourly data available for the period January
–June 30, 2004. Wind farms A and B had 1 kW hourly data for
uly 1, 2003–June 30, 2004.

One-second sampled real power output data with 0.1 watt
ower resolution for each of the six turbines at wind farm A and
ach of the 10 turbines at wind farm B were obtained for a 10-day
eriod in 2005. Wind farm A data for the final day ceased after
pproximately the first 21 h, leaving a total of 841,600 continu-

us samples (Fig. 1). Wind Farm B data were good throughout,
iving a total of 864,000 continuous samples. The individual
urbine outputs were then summed to give the output of each
ind farm (Figs. 4 and 5).

mailto:apt@cmu.edu
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Fig. 1. Real power output (kW) sampled with 1-s resolution for one 1.5 MW
turbine at one wind farm (farm A) for 10 days. Negative values are due to turbine
electrical loads.

Fig. 2. Real power output as a percent of nameplate capacity sampled with 1-h
resolution for the sum of the six turbines at wind farm A for the period January
1–June 30, 2004.

Fig. 3. Real power output as a percent of nameplate capacity sampled with 1-h
resolution for the sum of the 104 turbines at wind farms A, B, C, and D from
January 1 to June 30, 2004.

Table 1
Distance (km) between wind farms

A B C

D 320 350 400
A 30 100
B 90

Fig. 4. Real power output (kW) at 1-s resolution as the sum of the six turbines
at wind farm A over a 10-day period.
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ig. 5. Real power output (kW) at 1-s resolution as the sum of the 10 turbines
t wind farm B over a 10-day period.

. Geographic correlation

The 4368 hourly data points from January to June 2004 were
sed to examine the correlation of the power output between
ach pair of wind farms. Pearson’s correlation coefficient,

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(1)

as used to determine the linear correlation between the real

ower outputs of the facility pairs. More detailed techniques are
vailable for other correlation analysis [3].

The output power of wind farms that are in relatively close
roximity are strongly positively correlated (Table 2).
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Table 2
Output power correlation between wind farms, January 1–June 30, 2004

A B C

D 0.46 0.35 0.36
A 0.69 0.71
B 0.77
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2 s to 6 weeks (Fig. 9).
ig. 6. Real power output as a fraction of nameplate capacity of wind farms B
nd C for the first 4368 h of 2004. Each point represents one hourly datum.

The highest observed correlation was between wind farms B
nd C. Each point in Fig. 6 is the real power output from 1 h in
he data set for these two facilities.

It is sometimes asserted that combining outputs from geo-
raphically separated wind turbines dampens most power
uctuations. However, even at a distance of 400 km, there is
fair degree of positive correlation between wind farm D and

he other three facilities.

. Spectral analysis processing

To estimate the power spectrum (sometimes termed the power
pectral density or PSD) of the real power output of a wind
arm, the discrete Fourier transform of the time series of out-
ut measurements is computed. An N-point-long equal interval
ime sample of the output c(t) is used to construct the value at
requency domain point k, Ck [4]

k =
N−1∑
j=0

cj e2πijk/N, k = 0, 1, . . . , N − 1 (2)

The periodogram estimate of the power spectrum at fre-
uency domain point k is then [5]

P0 = 1

N2 |c2
0|

1 2 2 N

Pfk

=
N2 [|ck | + |cN−k|], k = 1, 2, . . . ,

2
− 1

Pfmax = 1

N2 |c2
N/2|

(3)
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here the relationship between the frequency and frequency
omain point k is given by

k = 2fmax
k

N
, k = 0, 1, . . . ,

N

2
(4)

nd fmax is (in concert with the Nyquist sampling theorem)
.5 Hz for the 1-s data, and 1.4 × 10−4 Hz for the 1-h data.

The periodogram is normalized so that the sum of all points P
s the mean squared amplitude of the time series c(t). To enable
etter comparison with other attributes of the electric power
ystem, the graphs that follow display the square root of the
eriodogram, so that the units are in kW

√
Hz−1.

One of the attributes of power spectrum estimation through
eriodograms is that increasing the number of time samples (N)
oes not decrease the standard deviation of the periodogram at
ny given frequency fk. In order to take advantage of a large num-
er of data points in a data set to reduce the variance at fk, the data
et may be partitioned into several time segments. The Fourier
ransform of each segment is then taken and a periodogram esti-

ate constructed. The periodograms are then averaged at each
requency, reducing the variance of the final estimate by the
umber of segments (and reducing the standard deviation by the
eciprocal of the square root of the number of segments).

In this work, eight segments are used. This has no effect on
max, but increases the lowest non-zero frequency (f1) by a factor
qual to the number of segments. Thus, the 366 days of hourly
ata treated in this manner have a minimum frequency compo-
ent of 2.5 × 10−7 Hz and a maximum frequency corresponding
o 2 h (1.4 × 10−4 Hz). When this technique is used, the 10-day
ime series acquired at 1-s resolution has frequency components
rom a minimum of 9.2 × 10−6 Hz to a maximum of 0.5 Hz.

Data windowing with both a Bartlett and Welch window fol-
owed by segment overlapping by one-half the segment length
6] was tried on the 1-s resolution data, with no noticeable
mprovement in the variance. The power spectra presented below
ere estimated without windowing (i.e. using a square window)

nd without overlapping the segments. In order to ensure that the
rocessing introduced no artifacts in the power spectra, the wind
arm A 1 s data were replaced by pseudorandom data (generated
sing a Marsaglia–Zaman subtract-with-borrow algorithm [7])
ith the same maximum and minimum as the wind farm A data.
he resulting PSD was flat on a log–log plot, as expected for

andom data.

. Power spectra

Using the method discussed in Section 4, the power spectra
or the wind farms A and B were estimated, using hourly sampled
ata from July 1, 2003 to June 30, 2004 and using 1-s sample
ata from a 10-day period.

The spectrum of the output of the sum of the six turbines at
ind farm A using the hourly sampled data (Fig. 7) and the 1-s

nterval data (Fig. 8) were combined to yield a spectrum from
The spectrum of the output of the sum of the 10 wind farm B
urbines using the hourly sampled data and the 1-s interval data
re combined in Fig. 10.
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Fig. 7. Power spectrum of data sampled at 1-h resolution of the sum of the six
turbines at wind farm A from July 1, 2003 to June 30, 2004 using 8-segment
averaging.
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Fig. 10. Combined power spectrum of data sampled at 1-h and 1-s resolution of
the sum of the 10 turbines at wind farm B using 8-segment averaging.
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ig. 8. Power spectrum of data sampled at 1-s resolution of the sum of the six
urbines at wind farm A using 8-segment averaging.

The combined spectra of Figs. 9 and 10 are characterized

y four different regions. At frequencies between 2 × 10−6

nd 4 × 10−2 Hz, the double logarithm plot of the spectrum
s linear (i.e. exponential in frequency). At frequencies above

Fig. 9. Combined wind farm A power spectra from Figs. 7 and 8.
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ig. 11. The combined wind farm A spectra of Fig. 9 (grey points) and a f−5/3

pectrum (solid line).

5 × 10−2 Hz, the physical and electrical inertia of the turbines
ppear to act as low-pass filters. Frequencies between 10−1 and
× 10−1 Hz show the noise floor of the output power sensors.
eaks in the spectrum in this region are generally due to the tur-
ine blade passing frequencies [8]. At frequencies below roughly
× 10−6 Hz the maximum output of the turbines provides an
pper limit to the spectrum.

The linear region of the power spectrum plot is well fit by an
xponential function in frequency of the form f−5/3 (Fig. 11).

The combined output of all four wind farms also follows the
ame form, over the frequency range sampled by the hourly data
Fig. 12).

. Kolmogorov spectrum

There are good theoretical reasons to believe that the power
pectrum follows the form found in Section 5. The Reynolds
umber (ratio of inertial to viscous force) of the Earth’s atmo-

phere can be ∼106. For sufficiently large Reynolds number,
iscous effects can be neglected, and the energy dissipation in
ind is dependent on only inertial forces. In this regime, for

n incompressible fluid, Kolmogorov’s second hypothesis of
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Fig. 13. The spectrum of load in one control area near the turbines used for
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ig. 12. The hourly spectra of the combined output of all four wind farms shown
n Fig. 3 (grey points) and a f−5/3 spectrum (solid line). Note the scale change
n the ordinate from previous figures.

imilarity [9] predicts that the power spectrum should vary as
−5/3.

The first experimental verification of Kolmogorov’s spectrum
as in an ocean tidal channel near Vancouver, over two decades
f frequency [10]. Similar spectra have been observed in the
tmosphere [11].

Previous published power spectra of wind generator power
2] have linear regions of the power spectrum plot covering one
r two decades of frequency. These studies have not provided a
omparison between their data and the Kolmogorov spectrum.

Analysis of the wind power spectrum has been hampered by a
ower spectrum of wind speed from 1.9 × 10−7 to 0.25 Hz pub-
ished in 1957 [12] that has been reprinted in a recent handbook
13] and review paper [14]. This spectrum has a pronounced
spectral gap” between about 3 × 10−5 and 7 × 10−3 Hz with
ery little energy. The data analyzed here show no such gap, and
n area-preserving plot (frequency times PSD against the log of
requency) shows a smooth behavior through this region. This
isagreement may arise from the way in that the older spectra
ere measured (at several different altitudes) or in the way those
ata from several time periods were combined.

The measured output power in the present study follows a
olmogorov spectrum over more than four orders of magni-

ude in frequency, from 30 s to 2.6 days. The actual atmospheric
ehavior may extend further, since these data are constrained
y the turbine inertia at high frequencies and by the maximum
utput of the turbines at low frequencies.

. Discussion

As shown in Sections 5 and 6, the output power of individual
urbines or wind farms can effectively be modeled by a f−5/3

elation for a broad range of frequencies, extending from the
urbine inertial limit at high frequency to the wind farm power

utput limit at low frequency.

The only previous use of the Kolmogorov spectrum for mod-
ling of wind power systems has been for flicker analysis at
requencies above 10−2 Hz [8]. However, caution should be used

w
f
c

his study for 180 days at 14-s time resolution using 8-segment averaging, and
Kolmogorov spectrum (f−5/3) displaced upwards from the best fit amplitude

or clarity.

t frequencies grater than roughly 5 × 10−2 Hz for turbines such
s those measured here, because their inertia has the effect of
pplying a low pass filter to the wind spectrum (Figs. 9–12).

Wind at small scale is sometimes treated by grid operators as
egative load. To examine the validity of this empirical practice,
oad data from a control area near the turbines used in this study
ere obtained with 14 s resolution for the first 180 days of 2004.
he PSD (Fig. 13) estimated in the same way as for the wind
ower data above shows the expected peaks at 1 day and its
armonics, as well as the weekly peak. There is a region, between
h and 2.5 min, in which the spectrum of this region’s load is fit
ell by a Kolmogorov spectrum. In this interval, the practice of

reating wind power fluctuations as negative load appears to be
ustified. Note that this is not the same thing as saying that load
uctuations cancel wind fluctuations, as is sometimes stated,
ince the two would have to be both of the same magnitude and
nti-correlated for the assertion to be valid.

. Conclusion

Since wind is an intermittent resource, it must be matched
ith fill-in power sources from storage or generation if the power
utput of wind farms on a grid are correlated.

If wind at very large scale were to be used, what ramp rate
haracteristics would be required by the fill-in energy? The
nsemble of generators, energy storage, and demand response
sed should have a power spectrum that matches that of the wind
enerators, the f−5/3 Kolmogorov spectrum.

A line connecting the 24 h load peak and its harmonics
Fig. 13) falls off as f−7/2. This rapid decrease in power at high
requency allows the use of slow-ramping generators to match
he fluctuations. However, the f−5/3 curve for wind power means
hat high frequency fluctuations contain considerable power.
A linear ramp rate generator is not the optimum match for
ind. The power spectral density for such a generator has the

orm f−2. Suppose that such a generator were to be sized to
ompensate for the variations in wind power at 1% of the max-
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J.C. Kaimal, Boundary Layer Meteorol. 4 (1973) 289–309.
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mum variations observed. This point is reached at roughly
.5 × 10−4 Hz for the systems shown in Figs. 9 and 10. Then
because the slope of the generator’s PSD is steeper than the
olmogorov spectrum) the generator would be sized to com-
ensate for fluctuations about twice as large as the maximum
ctually observed at low frequencies.

A more efficient match between wind’s fluctuations and fill-in
ower can be made by noting that the source is required to match
uctuations at high frequency, but at greatly reduced amplitude
ompared to the match required at low frequency.

Rather than size a linear ramp rate generator (often a natural
as generator in current practice) to match fluctuations in the
utput power of wind farms, a more efficient solution is to match
ind with an ensemble of generators and energy storage to match

he Kolmogorov spectrum of wind power. Fast devices including
atteries, fuel cells, or supercapacitors, with relatively low power
ould match the short-period fluctuations, while slower ramp

ate sources would match the longer period, higher amplitude
uctuations. The capital savings from not over-building linear
amp rate matching generation by a factor of two can be large
or wind at large scale.

The power spectra presented here can be used to evaluate
he suitability of battery, fuel cell, and supercapacitor systems
or use in large-scale wind systems. The advent of renew-
bles portfolio standards in many of the United States provides
n opportunity to deploy well-matched battery, fuel cell, and
upercapacitor systems with wind to provide a technical and
conomically efficient solution to wind’s fluctuation.
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